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Abstract. The formulation of Maxwell’s equations using exterior differentiation is compared
to that involving covariant differentiation. These two formulations are known to be equivalent
in a space with a Riemannian connection, and anecessary and sufficientcondition is established
here for this equivalence to be maintained in the case where the connection is of the most general
type, namely a connection with, in general, torsion and non-metricity, in addition to curvature.

1. Introduction

It is well known [1] that, in Cartesian coordinates in Minkowski space, Maxwell’s equations
may be written as

F[µν,ρ] = 0 Gµν
,ν = −lJ µ (1.1)

in terms of the componentsFµν andGµν of two antisymmetric tensorsF andG. In (1.1), l
is a constant depending on the system of units, and the comma denotes partial differentiation.
Alternatively, using Hodge dualization, (1.1) becomes [2]

dF = 0 d∗G̃ = −l ∗J̃ (1.2)

2F ≡ Fµνdxµ ∧ dxν 2G̃ ≡ Gµν dxµ ∧ dxν J̃ ≡ Jµ dxµ (1.3)

where the indices ofGµν andJµ have been lowered (by the Minkowski metric), which is
emphasized by the notatioñG and J̃ .

When attempting to apply Maxwell’s equations in a more generalC∞ manifold M,
one notes that (1.2) is mathematically meaningful and therefore does not require any
modification, whereas (1.1) is usually generalized by the ‘comma going to semi-colon’ rule
[3], namely by replacing the partial differentiation of the componentsFµν andGµν by the
covariant differentiation of the tensorsF ≡ Fµν dxµ ⊗dxν andG ≡ Gµν(∂/∂xµ)⊗ (∂/∂xν)

as

F[µν;ρ] = 0 Gµν ;ν = −lJ µ. (1.4)

Therefore, in a generalC∞ manifold (with connection), both forms (1.4) and (1.2) are
meaningful and have the property that they reduce to (1.1) in Cartesian coordinates in
Minkowski space.
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However, in general, it is clear that (1.4) depends on the choice of the connection,
whereas (1.2) is independent of the connection. Consequently, it is impossible that (1.2)
and (1.4) should be equivalent in general. Moreover, asufficient condition for (1.2) and
(1.4) to be equivalent is that the connection be Riemannian [3]. The question arises, thus,
to find anecessaryand sufficient condition for the equivalence to hold.

In this work, we shall consider the most general connection, which exhibits curvature,
torsion, and non-metricity, and establish that (1.2) and (1.4) are equivalent if and only if
the torsion vanishes and the non-metricity is traceless. (Renewed interest has recently been
shown in connection with non-metricity [4, 5].)

In section 2, we shall express the exterior-calculus formulation (1.2) of Maxwell’s
equations in components in an arbitrary frame{Ee

(µ)} in the cotangent spaceT ∗M to the
manifoldM. Then we shall, in section 3, develop the fundamental equations of the general
connections with curvature, torsion, and non-metricity. In section 4, we shall ‘translate’
the exterior-calculus form (1.2) in covariant-derivative language, which will enable us to
compare the results with the covariant-derivative form (1.4) of Maxwell’s equations, and
yield the desired necessary and sufficient condition for the equivalence of (1.2) and (1.4).
Finally, in section 5, we shall solve the problem of the electrostatic field created by a point
charge in a space with non-traceless non-metricity. This will provide a simple example
where the difference between the two formulations of Maxwell’s equations comes to light.

It is important to emphasize that, to solve Maxwell’s equations in either of the forms
(1.2) or (1.4), one needs to adopt a ‘constitutive relation’ linkingF to G. None of the
considerations made hereafter, in sections 2–4, will involve this constitutive relation. Only
in section 5, where we shall solve a specific example, will the constitutive equation of the
vacuum be employed, namely

G̃ = kF (vacuum) (1.5)

wherek is a constant depending on the system of units.

Remark. The inhomogeneous Maxwell equation given in (1.4) is not the only conceivable
generalization† of the inhomogeneous equation of (1.1). For instance, one might consider

gµαgνβGαβ;ν = −lJ µ (1.6)

which is distinct from the inhomogeneous equation of (1.4) when the connection is not
metric-compatible.

There is, however, no difficulty in relating (1.6) to the inhomogeneous equation of (1.4).
For the sake of clarity, the main body of this article will deal exclusively with (1.2) and
(1.4), and the ‘translation’ of the results in terms of the form (1.6) will be performed in the
appendix.

2. Exterior-calculus formulation in components

Let F and G̃ be the electro-magnetic two-forms of (1.3), expressed in the arbitrary basis
{Ee

(µ)} of T ∗M:

2F ≡ FµνEe
(µ) ∧ Ee

(ν) 2G̃ ≡ GµνEe
(µ) ∧ Ee

(ν). (2.1)

The frame{Ee
(µ)} is characterized by its commutation coefficientsDµ

αβ , defined by

2dEe
(µ) = −Dµ

αβEe
(α) ∧ Ee

(β). (2.2)

† The author would like to thank the referee for this remark.
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As the terminology suggests, they are related to the commutator of the basic vectors{e(µ)},
dual to{Ee

(µ)}, by

[e(µ), e(ν)] = Dα
µνe(α). (2.3)

The homogeneous Maxwell equation from (1.2) may then be written as

0 = 2dF = d{FµνEe
(µ) ∧ Ee

(ν)} (2.4)

= (dFµν) ∧ Ee
(µ) ∧ Ee

(ν) + Fµν d(Ee
(µ) ∧ Ee

(ν)) (2.5)

= {e(ρ)(Fµν) − FαρD
α

µν}Ee
(ρ) ∧ Ee

(µ) ∧ Ee
(ν) (2.6)

where we have employed (2.2). Owing to the total antisymmetry ofEe
(ρ) ∧ Ee

(µ) ∧ Ee
(ν), (2.6)

is equivalent to

0 = e[(ρ)(Fµν]) − Fα[ρD
α

µν] . (2.7)

Furthermore, to treat the inhomogeneous Maxwell equation from (1.2), one needs the
definition of the Hodge dual. We adopt here the following convention, for an arbitrary
q-form qα, 0 6 q 6 4, in four dimensions,

∗
qα ≡ 1

q!(4 − q)!

√
|g| qα

µ1...µq εµ1...µ4Ee
(µq+1) ∧ . . . ∧ Ee

(µ4) (2.8)

where|g| andεµ1...µ4 denote the absolute value of the determinant of the matrixgµν of the
covariant components of the metric, and the totally antisymmetric symbol in four dimensions
with ε1234 = +1, respectively.

The inhomogeneous equation from (1.2) is now easily obtained in components. One
first evaluates the Hodge duals∗G̃ and∗J̃ as being

4 ∗G̃ =
√

|g|GαβεαβµνEe
(µ) ∧ Ee

(ν) (2.9)

6 ∗J̃ =
√

|g|J αεαρµνEe
(ρ) ∧ Ee

(µ) ∧ Ee
(ν). (2.10)

After a calculation similar to that leading to (2.7), the inhomogeneous equation (1.2)
becomes

1√|g|εαβ[µνe(ρ)](
√

|g|Gαβ) − εαβγ [ρD
γ

µν]G
αβ = − 2

3lJ αεαρµν. (2.11)

In order to simplify (2.11), we contract it withεθρµν and employ the combinatorial identities

εµαβγ εναβγ = 3!δν
µ εµναβερσαβ = 2!2!δρ

[µδσ
ν] εµνραεστφα = 3!δσ

[µδτ
ν δ

φ
ρ] (2.12)

to yield

1√|g|e(ν)(
√

|g|Gθν) + Dα
αβGθβ − 1

2Dθ
αβGαβ = −lJ θ . (2.13)

The conclusion that we reach is that Maxwell’s equations, in the language of differential
forms, read, in coordinate-free and component formulation,

dF = 0 ⇔ e[(ρ)(Fµν]) − Fα[ρD
α

µν] = 0 (2.14)

d ∗G̃ = −l ∗J̃ ⇔ 1√|g|e(ν)(
√

|g|Gµν) + Dα
αβGµβ − 1

2Dµ
αβGαβ = −lJ µ. (2.15)

These results hold in full generality for aC∞ manifold M. Incidentally, we also see
from (2.14) and (2.15) that, for Minkowski space in Cartesian coordinates, the commutation
coefficientsD of the basise(µ) ≡ ∂/∂xµ vanish, and the metric has determinant−1, so
that (2.14) and (2.15), coming from exterior differentiation, reproduce, in that very special
case, the correct Maxwell equations (1.1).
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To prepare the comparison, in full generality, between (2.14), (2.15) and the covariant-
derivative form (1.4), we need to recall the fundamental equations of connection theory, in
the presence of curvature, torsion, and non-metricity. This will be done in the next section.
Detailed proofs of the relevant theorems will, however, not be given below, since they
are similar to those of the torsion-free, metric-compatible case, available in text books, for
instance in [6].

3. Connections with torsion and non-metricity

In general, a connection0, expressed in components by

∇e(µ)
e(ν) = 0α

νµe(α) (3.1)

where∇ denotes the operator of covariant differentiation, exhibits curvatureR and torsion
T . The latter read

T (u, v) ≡ ∇uv − ∇vu − [u, v] = −T (v, u) (3.2)

R(u, v, w) ≡ (∇u∇v − ∇v∇u − ∇[u,v])w = −R(v, u, w) (3.3)

in which u, v, andw are arbitraryC∞ vector fields. (In what follows, the curvature will
play no role, and therefore we shall not pursue further the treatment ofR.) In order to
obtain the component expression of the torsion, we substituteu andv in (3.2) by the basic
vectorse(α) ande(β), and find

T µ
αβ ≡ Ee

(µ){T (e(α), e(β))} = 20µ
[βα] − Dµ

αβ = −T µ
βα (3.4)

where (2.3) has been employed.
Moreover, from the metric tensorg and the covariant derivative∇, one may introduce

the non-metricity tensorH as

H(v, x, y) = (∇vg)(x, y) = H(v, y, x) (3.5)

for all x, y, v. By virtue of (3.1), this becomes, in components,

Hµαβ ≡ H(e(µ), e(α), e(β)) = e(µ)(gαβ) − 0βαµ − 0αβµ = Hµβα (3.6)

where we put

0αβγ ≡ gακ0
κ
βγ . (3.7)

The important point, for our purposes, is that, from the component expressions (3.4)
and (3.6) of the torsion and the non-metricity, it is possible to determine the connection
coefficients0αβγ as

0αβγ = 〈αβγ 〉 + Qαβγ − Kαβγ (3.8)

where we introduced the notation

〈αβγ 〉 ≡ [αβγ ] + Cαβγ (Levi–Civita or Riemannian connection) (3.9)

2[αβγ ] ≡ e(γ )(gαβ) + e(β)(gαγ ) − e(α)(gβγ ) = 2[αγβ]

(Christoffel symbol of the 1st kind) (3.10)

2Cαβγ ≡ Dγαβ + Dβαγ − Dαβγ = −2Cβαγ (anholonomic connection) (3.11)

2Qαβγ ≡ Tγαβ + Tβαγ − Tαβγ = −2Qβαγ (contorsion tensor) (3.12)

2Kαβγ ≡ Hγαβ + Hβαγ − Hαβγ = +2Kαγβ (metric-incompatibility tensor). (3.13)
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As a consequence of (3.8)–(3.13), when the basis{e(µ)} has been chosen (so thatDµ
αβ

is known), there exists a unique connection0 admitting a given metricg, torsionT , and
non-metricityH .

Alternatively to (3.8), one may raise the first index of the connection coefficients (using
the metric), and obtain

0α
βγ = 〈αβγ 〉 + Qα

βγ − Kα
βγ (3.14)

where, in the quantity〈αβγ 〉, the contributiongακ [κβγ ], which arises from (3.9), is denoted
by {αβγ } and called the ‘Christoffel symbol of the second kind’. It will be necessary in the
following section.

In the special case whereH = 0, so thatK = 0, the connection is said to be ‘metric-
compatible’. If, in the metric-compatible case, the connection admits torsion, namely if
T 6= 0 6= Q, the connection is said to be of the ‘Riemann–Cartan’ type, whereas if the
torsion vanishes, the connection is said to be ‘Levi–Civita’ (or ‘Riemannian’), which is
the well known connection used in general relativity. Riemann–Cartan connections appear,
for instance, in the Poincaré gauge-field theory [7] or in supergravity [8]. The special
(torsion-free) non-metric-compatible connection characterized by

Hαβγ ≡ 2Aαgβγ (3.15)

whereA is a covariant vector field, is employed in Weyl’s theory [9] of gravity. (In this
context, A is usually called the ‘Weyl vector’.) See also [4, 5] for recent developments
relating non-metric-compatible connections to dilaton gravity.

We shall not develop here the geometrical interpretation of the torsion and the non-
metricity in any detail. (The reader is referred to [10] for a more comprehensive treatment.)
It is sufficient for our purposes to recall that the non-metricity expresses how the scalar
productv · w of two vectorsv andw varies whenv andw are parallel-transported along
a vector fieldx. More precisely,

x[v · w] ≡ x[g(v, w)] = H(x, v, w) = Hαµνx
αvµwν (3.16)

where x[f ] denotes the rate of change of a functionf along x. Furthermore, if the
non-metricityHαµν is decomposed into its trace in the last two indices and the traceless
remainder as

Hαµν = [Hαµν − 1
4(gθλHαθλ)gµν ] + 1

4(gθλHαθλ)gµν (3.17)

≡ 0Hαµν + Hαgµν (3.18)

gµν 0Hαµν = 0 4Hα ≡ gθλHαθλ (3.19)

it is easy to establish that two parallel-transported vectorsv and w experience a shear
coming from the traceless part0Hαµν and an expansion coming from the traceHα, whereas
they undergo a Lorentz transformation in the absence of both0Hαµν andHα. In particular,
in a Weyl space, characterized by (3.15), the traceless part0Hαµν vanishes, and the trace
part Hα is given byHα = 2Aα in terms of the Weyl vectorA.

We are now ready to investigate the covariant-derivative formulation (1.4) of Maxwell’s
equations and its relationship with the exterior-differentiation form (2.14) and (2.15).

4. Exterior-calculus formulation in covariant-derivative language

If one considers Maxwell’s homogeneous equation (2.14) in components, the contribution
e[(ρ)(Fµν]) is reminiscent of the termF[µν;ρ] , which appears in the form (1.4) involving
covariant derivatives. Let us therefore calculateFµν;ρ in terms of the connection coefficients.
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By virtue of definition (3.1) of the connection coefficients, one has

Fµν;ρ = e(ρ)(Fµν) − Fαν0
α

µρ − Fµα0α
νρ (4.1)

= e(ρ)(Fµν) − Fα
ν0αµρ + Fα

µ0ανρ (4.2)

where the antisymmetry ofF has been exploited. Therefore, the antisymmetric partF[µν;ρ]

reads

F[µν;ρ] = e[ρ(Fµν]) − Fα
[ν0|α|µρ] + Fα

[µ0|α|νρ] = e[ρ(Fµν]) + 2Fα
[µ0|α|νρ] (4.3)

in which antisymmetrization is not applied to indices between vertical bars.
Furthermore, we saw in the previous section that, according to (3.8), the connection

components0αµν are given by the combination of the Riemannian connection〈αµν〉, the
contorsion tensorQαµν , and the metric-incompatibility tensorKαµν . After substituting this
decomposition into (4.3), there follows

F[µν;ρ] = F[µν!ρ] + 2Fα
[µQ|α|νρ] − 2Fα

[µK|α|νρ] (4.4)

in which we have adopted the ‘exclamation mark’ notation for the covariant derivative of
a tensor with respect to the Riemannian part of the connection

F[µν!ρ] = e[ρ(Fµν]) + 2Fα
[µ〈|α|νρ]〉. (4.5)

Given that, as found in (3.13) of section 3, the metric-incompatibility tensorK is symmetric
in its last two indices, the antisymmetrization involvingK in (4.4) vanishes. In addition,
the expression of the contorsion tensorQ in terms of the torsionT is known from (3.12).
As a result, (4.4) simplifies as

F[µν;ρ] = F[µν!ρ] − Fα
[µT|α|νρ] . (4.6)

What remains to be done is to evaluate the Riemannian partF[µν!ρ] .
The Riemannian part〈µνρ〉 of the connection is the sum of the Christoffel symbol [µνρ]

of the first kind and the anholonomic connectionCµνρ , as seen in (3.9). The Christoffel
symbol is symmetrical in its last two indices, so that the antisymmetrization appearing in
(4.5) receives no contribution from it. Furthermore, when the anholonomic connectionC is
substituted into (4.5) by its value from (3.11) in terms of the commutation coefficientsD,
a simple calculation yields

F[µν!ρ] = e[(ρ)(Fµν]) − Fα[ρD
α

µν] . (4.7)

When (4.7) and (4.6) are compared with Maxwell’s homogeneous equation (2.14) in
the exterior-differential formulation, one obtains the following four equivalent expressions:

dF = 0 ⇔ e[(ρ)(Fµν]) − Fα[ρD
α

µν] = 0 (4.8)

⇔ F[µν!ρ] = 0 (4.9)

⇔ F[µν;ρ] + Fα
[µT|α|νρ] = 0. (4.10)

Let us consider now the inhomogeneous Maxwell equation (2.15). This equation may
be simplified by exactly the same method as the one that we applied to the homogeneous
equation, and therefore we shall not present here all the details of the calculation.

One begins by again using definition (3.1) of the connection to evaluateGµν ;ν in terms
of the connection coefficients0µ

νρ , yielding

Gµν ;ν = e(ν)(G
µν) + 0µ

αβGαβ + 0α
βαGµβ. (4.11)

The coefficients0µ
νρ are then substituted by their values in terms of the Riemannian

connection〈µνρ〉, the contorsion tensorQµ
νρ , and the metric-incompatibility tensorKµ

νρ ,
with the result

Gµν ;ν = e(ν)(G
µν) + (〈µαβ〉 + Qµ

αβ − Kµ
αβ)Gαβ + (〈αβα〉 + Qα

βα − Kα
βα)Gµβ. (4.12)
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After grouping together the terms involving the Riemannian connection〈αβγ 〉, and exploiting
the symmetry of the metric-incompatibility tensorK in its last two indices, (4.12) becomes

Gµν ;ν = Gµν
!ν + Qµ

αβGαβ + (Qα
βα − Kα

βα)Gµβ (4.13)

Gµν
!ν = e(ν)(G

µν) + 〈µαβ〉Gαβ + 〈αβα〉Gµβ. (4.14)

We now replace in (4.13) the contorsionQ and the metric-incompatibilityK by their
expressions (3.12) and (3.13) in terms of the torsionT and the non-metricityH , with the
consequence that

Gµν ;ν = Gµν
!ν − 1

2T µ
αβGαβ + (T α

αβ − 1
2H

α

β α)Gµβ. (4.15)

To evaluate the Riemannian contributionGµν
!ν of (4.14), one recalls that the Riemannian

connection〈µνρ〉 is the sum of the Christoffel symbol{µνρ} of the second kind and the
anholonomic connectionCµ

νρ . The latter is known in terms of the commutation coefficients
Dµ

νρ by (3.11). After substitution of these relationships into (4.14), one finds

Gµν
!ν = e(ν)(G

µν) + {αβα}Gµβ + Dα
αβGµβ − 1

2Dµ
αβGαβ. (4.16)

Moreover, a simple calculation based on the properties of determinants yields [11]

{αβα} = 1

2

1

|g|e(β)(|g|) (4.17)

which enables one to reformulate (4.16) as

Gµν
!ν = 1√|g|e(ν)(

√
|g|Gµν) + Dα

αβGµβ − 1
2Dµ

αβGαβ. (4.18)

When (4.18) and (4.15) are compared with the inhomogeneous Maxwell equation (2.15),
coming from exterior differentiation, one obtains the following four equivalent formulations:

d ∗G̃ = −l ∗J̃ ⇔ 1√|g|e(ν)(
√

|g|Gµν) + Dα
αβGµβ − 1

2Dµ
αβGαβ = −lJ µ (4.19)

⇔ Gµν
!ν = −lJ µ (4.20)

⇔ Gµν ;ν + ( 1
2H

α

β α − T α
αβ)Gµβ + 1

2T µ
αβGαβ = −lJ µ. (4.21)

These expressions, together with (4.8)–(4.10), constitute the full set of Maxwell’s equations
in matter, as they arise from the formalism involving exterior differentiation. We are now in
the position to study the relationship between these equations and those obtained, in (1.4),
in covariant-derivative form.

What is obvious from (4.9) and (4.20) is that the exterior-calculus formulation isnot
equivalent to the covariant-derivative form (1.4), but rather to

F[µν!ρ] = 0 Gµν
!ν = −lJ µ. (4.22)

In other words, the exterior-calculus formulation is equivalent to the covariant-derivative
form based on the Riemannian partof the total connection0. It follows (trivially) that the
two formulations agree if the connection0 is Riemannian. This is well known [3]; what
is more important is that the equivalence is maintained for a large class of connections0

containing the Riemannian connections as special cases, as we shall now establish.
When the two versions (1.4) and (4.10) of Maxwell’s homogeneous equation are

compared to each other, one sees that the term by which they differ vanishes, for all fields
F , if and only if the torsionT vanishes. Moreover, an analogous comparison between
the two versions (1.4) and (4.21) of the inhomogeneous equation shows that both versions
become identical if and only if the torsion vanishes, as well as the quantityH

α

β α. The
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latter requirement means, in the terminology of section 3, that the non-metricity must be
traceless.

The conclusion that we reach is thus that the vanishing of the torsionT and of the
trace 4Hµ ≡ H α

µ α of the non-metricity is the necessary and sufficient condition for the
two formulations of Maxwell’s equations to be equivalent. This class of connections is
larger than the class of Riemannian connections since it allows the additional freedom of
the traceless part0Hµαβ of the non-metricity. When the necessary and sufficient condition is
not satisfied, the two forms of Maxwell’s equations are genuinely inequivalent. For instance,
the two forms differ for a Weyl connection, defined by (3.15), and for a metric-compatible
connection with torsion (employed, for instance, in supergravity [8]). To illustrate the
inequivalence of the two forms, we shall investigate the example of the electrostatic field
created by a point chargein vacuo in the following section.

5. Point charge and non-metricity

Let us consider the problem of determining the electrostatic field produced,in vacuo, by
a point chargeQ. The manifoldM in which Q resides is assumed to possess a metricg

given by

g = dr2 + r2 dθ2 + r2 sin2 θ dφ2 − dt2. (5.1)

Moreover, we also assume that the torsion vanishes and that the non-metricity takes the
simple form

2Hµνρ ≡ e(µ)(h)gνρ (5.2)

for a certain scalar fieldh. In other words, with the terminology of section 3, the manifold
M under consideration is a special type of Weyl space, where the Weyl vectorA is given
by

4Aµ = e(µ)(h). (5.3)

The justification for these choices is that (5.1) is the Minkowski metric. Moreover,
when h is constant, the non-metricity vanishes, which, together with the vanishing of the
torsion, implies thatM is then Minkowski space. Thus, we are dealing here with a very
simple generalization of Minkowski space, which reduces to Minkowski space whenh is
constant. Furthermore, by virtue of (5.2), the non-metricity is trace-free if and only ifh

is constant. Consequently, according to the necessary and sufficient condition of section 4,
the two forms (1.2) and (1.4) of Maxwell’s equations will yield equivalent results if and
only if h is constant, as we shall see.

For all the calculations that follow, we shall use the cotangent-space orthonormal frame

Ee
(µ̂) defined by

Ee
(µ̂) ≡


dr

r dθ

r sinθ dφ

dt

 (5.4)

so that the metric (5.1) becomes

g = ηµνEe
(µ̂) ⊗ Ee

(ν̂) ηµν ≡ diag(1, 1, 1, −1). (5.5)

(Indices referring to an orthonormal basis are indicated by a caret.)
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To describe the electrostatic field of a point chargeQ located atr = 0, we take, as a
source, the four-current densityJ µ̂ as

J 4̂ = Q

4πr2
δ(r) J 1̂ = J 2̂ = J 3̂ = 0 (5.6)

whereδ denotes Dirac’s distribution. Furthermore, we assume that the only non-vanishing
components ofGµ̂ν̂ are

G1̂4̂ = −G4̂1̂ ≡ D(r) (5.7)

where D is a function of r only, interpreted as the radial component of the electric
displacementD. We also adopt the constitutive equation (1.5) of the vacuum, which
determinesF in terms ofG. (The componentsF 1̂4̂ = −F 4̂1̂ are interpreted as the radial
component of electric fieldE.)

Consider first the exterior-calculus form (2.14) and (2.15) of Maxwell’s equations. There
is no difficulty in evaluating the commutation coefficientsDµ̂

ν̂ρ̂ of frame (5.4) by the
application of (2.2), and to check that, for the fields (5.6) and (5.7), the only non-trivial
Maxwell equation reads

d

dr
(r2D) = lQ

4π
δ(r). (5.8)

After integration, this yields

D(r) = lQ

4πr2
H(r) + C

r2
(5.9)

whereH denotes Heaviside’s unit-step function, andC is an arbitrary constant. For physical
reasons, we putC equal to zero, so as to ensure that the electric displacementD vanishes
whenQ = 0. The final answer thus becomes the well known Coulomb field

D(r) = lQ

4πr2
= kE(r) r > 0 (5.10)

in which the the electric fieldE has been obtained fromD by the constitutive equation (1.5)
of the vacuum. (In the Gaussian system,k and l have the value 1 and 4π , respectively.)

The final result (5.10), which follows from the exterior-calculus form of Maxwell’s
equations, is valid for the Weyl spaceM in which the charge resides. In particular, if
the non-metricity functionh appearing in (5.2) is constant, (5.10) applies to Minkowski
space. As mentioned in the introduction, the exterior-calculus form of Maxwell’s equations
is independent of the connection, which is manifest in (5.10) sinceE andD are independent
of h. This will not be the case for the covariant-derivative form (1.4) of Maxwell’s equations,
as we shall now see.

To express (1.4), one may, but need not, calculate the connection using (3.8)–(3.13),
so as to be able to evaluate the covariant derivatives present in (1.4). It is simpler to
compare (1.4) with the set (4.10) and (4.21), which we have already analysed above. In
our special case, where the torsion vanishes, the homogeneous equations are the same,
and the inhomogeneous equations only differ by the term1

2H
α

β αGµβ . As above, we use
the frame (5.4) and the non-metricity (5.2), with a functionh depending onr. The only
non-trivial Maxwell equation, which corresponds to (5.8), reads

d

dr
(r2D) − (r2D)

dh

dr
= lQ

4π
δ(r). (5.11)

It is equivalent to

d

dr
(r2De−h) = lQ

4π
e−hδ(r) (5.12)
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and integrates as

D(r) = lQ

4πr2
H(r)e(h(r)−h(0)) + C

r2
eh(r) (5.13)

whereC is an arbitrary constant. For the same reason as in (5.9), we putC equal to zero,
and find

D(r) = lQ

4πr2
e(h(r)−h(0)) = kE(r) r > 0. (5.14)

The final result (5.14) does now depend onh, unlessh is constant, in contrast to
what was the case in (5.10). We have thus exhibited an example where the outcomes
of exterior-calculus form (1.2) and of the covariant-derivative form (1.4) of Maxwell’s
equations are different. The difference arises, in this example, from a non-metricity which
is not traceless, unless the functionh in (5.14) is constant. This is in keeping with the general
necessary and sufficient condition of equivalence between the exterior-calculus form and
the covariant-derivative form, established in section 4. In particular, whenh is constant,
the Weyl spaceM degenerates to Minkowski space, and the results (5.10) and (5.14) both
coincide with the well known Coulomb field.

6. Conclusion

In this article, we considered the exterior-calculus form (1.2) and the covariant-derivative
form (1.4) of Maxwell’s equations, and we investigated under what conditions these forms
are equivalent. A knownsufficientcondition [3] is that spacetime possesses a Riemannian
connection. We established here that thenecessaryand sufficient condition is that the
torsion and the trace of the non-metricity vanish. (This contains the Riemannian connection
as a special case.) In other words, the two forms of Maxwell’s equations areinequivalent
in spaces admitting either torsion or non-metricity with trace (or both).

We then illustrated this construction by studying the problem of determining the vacuum
electrostatic field produced by a point chargeQ residing at the origin of a special Weyl
spaceM. This space differs from Minkowski space by the presence of non-traceless non-
metricity, which is determined by a functionh according to (5.2). Whenh is constant,
M reduces to Minkowski space. InM, the exterior-calculus form (1.2) of Maxwell’s
equations yields the electrostatic field (5.10), whereas the covariant-derivative form (1.4)
yields the field (5.14). In accordance with the necessary and sufficient condition established
in section 4, these fields are genuinely inequivalent, unlessh is constant.

Acknowledgment

Dr D Hurley (Cork) is gratefully acknowledged for interesting discussions about
mathematical aspects of this work.

Appendix

It is a simple matter to relate the alternative inhomogeneous equation (1.6) to the
inhomogeneous equation of (1.4). To this end, one establishes first that the covariant
derivative of the contravariant metric is given by

gαβ
;ξ = −Hξ

αβ (A.1)
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which follows from definition (3.5) of the non-metricityH and the Leibniz rule applied to
the right-hand side of

0 = (gµαgαν);ξ . (A.2)

Then, the Leibniz rule is used once more, together with (A.1), to evaluateGµν ;ν as being,
after an elementary treatment,

Gµν ;ν = (gµαgνβGαβ);ν (A.3)

= gµαgνβGαβ;ν + Hαβ
µGαβ − Hα

αβGµβ. (A.4)

The relationship (A.4) enables one to re-express the results obtained for the inhomogeneous
Maxwell equation of (1.4), involvingGµν ;ν , in terms of the quantitygµαgνβGαβ;ν which
appears in the alternative equation (1.6), and hence to re-interpret our conclusions in terms
of this alternative equation.
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