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Abstract. The formulation of Maxwell's equations using exterior differentiation is compared

to that involving covariant differentiation. These two formulations are known to be equivalent
in a space with a Riemannian connection, anteeessary and sufficiesbndition is established

here for this equivalence to be maintained in the case where the connection is of the most general
type, namely a connection with, in general, torsion and non-metricity, in addition to curvature.

1. Introduction

It is well known [1] that, in Cartesian coordinates in Minkowski space, Maxwell's equations
may be written as

Fluvp) =0 G, =-1J" (1.1)

in terms of the components,, andG*" of two antisymmetric tensor8 andG. In (1.1),!
is a constant depending on the system of units, and the comma denotes partial differentiation.
Alternatively, using Hodge dualization, (1.1) becomes [2]

dF =0 dG =-1*J (1.2)
2F = F,,dx" A dx” 2G = G, dx* A dx" J = J,dc" (1.3)

where the indices oz*" and J* have been lowered (by the Minkowski metric), which is
emphasized by the notatias and J.

When attempting to apply Maxwell's equations in a more genéfal manifold M,
one notes that (1.2) is mathematically meaningful and therefore does not require any
modification, whereas (1.1) is usually generalized by the ‘comma going to semi-colon’ rule
[3], namely by replacing the partial differentiation of the componednts and G*¥ by the
covariant differentiation of the tensofs= F,, dx* @ dx* andG = G""(3/9x") @ (3/9x")
as

Fvip) =0 G"y = —1J". (1.4)

Therefore, in a general’>* manifold (with connection), both forms (1.4) and (1.2) are
meaningful and have the property that they reduce to (1.1) in Cartesian coordinates in
Minkowski space.
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However, in general, it is clear that (1.4) depends on the choice of the connection,
whereas (1.2) is independent of the connection. Consequently, it is impossible that (1.2)
and (1.4) should be equivalent in general. Moreovesu8icient condition for (1.2) and
(1.4) to be equivalent is that the connection be Riemannian [3]. The question arises, thus,
to find anecessaryand sufficient condition for the equivalence to hold.

In this work, we shall consider the most general connection, which exhibits curvature,
torsion, and non-metricity, and establish that (1.2) and (1.4) are equivalent if and only if
the torsion vanishes and the non-metricity is traceless. (Renewed interest has recently been
shown in connection with non-metricity [4, 5].)

In section 2, we shall express the exterior-calculus formulation (1.2) of Maxwell’s
equations in components in an arbitrary frafa&”} in the cotangent spacg*M to the
manifold M. Then we shall, in section 3, develop the fundamental equations of the general
connections with curvature, torsion, and non-metricity. In section 4, we shall ‘translate’
the exterior-calculus form (1.2) in covariant-derivative language, which will enable us to
compare the results with the covariant-derivative form (1.4) of Maxwell's equations, and
yield the desired necessary and sufficient condition for the equivalence of (1.2) and (1.4).
Finally, in section 5, we shall solve the problem of the electrostatic field created by a point
charge in a space with non-traceless non-metricity. This will provide a simple example
where the difference between the two formulations of Maxwell's equations comes to light.

It is important to emphasize that, to solve Maxwell's equations in either of the forms
(1.2) or (1.4), one needs to adopt a ‘constitutive relation’ linkingo G. None of the
considerations made hereafter, in sections 2—4, will involve this constitutive relation. Only
in section 5, where we shall solve a specific example, will the constitutive equation of the
vacuum be employed, namely

G =kF (vacuum) (1.5)
wherek is a constant depending on the system of units.

Remark The inhomogeneous Maxwell equation given in (1.4) is not the only conceivable
generalizatioh of the inhomogeneous equation of (1.1). For instance, one might consider

"8 Gop = —1J" (1.6)

which is distinct from the inhomogeneous equation of (1.4) when the connection is not
metric-compatible.

There is, however, no difficulty in relating (1.6) to the inhomogeneous equation of (1.4).
For the sake of clarity, the main body of this article will deal exclusively with (1.2) and
(1.4), and the ‘translation’ of the results in terms of the form (1.6) will be performed in the
appendix.

2. Exterior-calculus formulation in components

Let F and G be the electro-magnetic two-forms of (1.3), expressed in the arbitrary basis
{e"} of T*M:

2F = F,e™ A e 2G = G e e, (2.1)
The frame{e™} is characterized by its commutation coefficielts, s, defined by
20 = — D" pe@ AP (2.2)

1 The author would like to thank the referee for this remark.



Maxwell's equations in spaces with non-metricity and torsion 2247

As the terminology suggests, they are related to the commutator of the basic egigrs
dual to{e™}, by

[eqw. ew] = D veq. (2.3)
The homogeneous Maxwell equation from (1.2) may then be written as
0=2dF = d{F,,e™ Ae™} (2.4)
= (dF) A" Ae™ + Fyyde™ ne™) (2.5)
= {e()(Fu) — FapD® 1} A e A e (2.6)

where we have employed (2.2). Owing to the total antisymmet/®fa e A e, (2.6)
is equivalent to

0= e (Fuv) — Fapp D% - (2.7)

Furthermore, to treat the inhomogeneous Maxwell equation from (1.2), one needs the
definition of the Hodge dual. We adopt here the following convention, for an arbitrary
g-form o, 0 < ¢ < 4, in four dimensions,

1

1= i gV 8l A (2.8)

where|g| ande,,. ,, denote the absolute value of the determinant of the mgjrixof the
covariant components of the metric, and the totally antisymmetric symbol in four dimensions
with €1034 = +1, respectively.

The inhomogeneous equation from (1.2) is now easily obtained in components. One
first evaluates the Hodge dudl§é and*J as being

4*(; — /|g|Gaﬂ6aﬂMvg(M) A g(U) (29)
6*J = /IglJ%upuve® A e Ae™. (2.10)

After a calculation similar to that leading to (2.7), the inhomogeneous equation (1.2)
becomes

«, «, 27
meaﬁ[we(p)lmgm P) — €apyio D7 10 GP = —517% €qppun- (2.11)
In order to simplify (2.11), we contract it witk?*** and employ the combinatorial identities
€uapy € P’ = 318" €uvape’ P = 212180 57 €upa€’ P = 3!3&555;‘)’] (2.12)
to yield
ew (V181G + D% G — ID° (sG* = —1J°. (2.13)
Vil 2

The conclusion that we reach is that Maxwell’'s equations, in the language of differential
forms, read, in coordinate-free and component formulation,

dF =0« e[(p)(F,”]) — Fa[pDalw] =0 (2.14)
. y 1

d*G = -1*J] & ﬁew)mgm““) + D% G" — 1DV (s G = —1 . (2.15)
g

These results hold in full generality for @° manifold M. Incidentally, we also see
from (2.14) and (2.15) that, for Minkowski space in Cartesian coordinates, the commutation
coefficientsD of the basise(,) = 9/dx* vanish, and the metric has determinant, so

that (2.14) and (2.15), coming from exterior differentiation, reproduce, in that very special
case, the correct Maxwell equations (1.1).
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To prepare the comparison, in full generality, between (2.14), (2.15) and the covariant-
derivative form (1.4), we need to recall the fundamental equations of connection theory, in
the presence of curvature, torsion, and non-metricity. This will be done in the next section.
Detailed proofs of the relevant theorems will, however, not be given below, since they
are similar to those of the torsion-free, metric-compatible case, available in text books, for
instance in [6].

3. Connections with torsion and non-metricity

In general, a connection, expressed in components by

\Y% Ew) = Favue(a) (31)

€

whereV denotes the operator of covariant differentiation, exhibits curvakuasd torsion
T. The latter read

T(u,v) = Vv — Vyu — [u,v] = —T (v, u) 3.2)

R(u, v, w) = (VyVy — Vu Vy — Vi o)) w = —R(v, u, w) (3.3)
in which u, v, andw are arbitraryC* vector fields. (In what follows, the curvature will
play no role, and therefore we shall not pursue further the treatmegt)ofln order to

obtain the component expression of the torsion, we substitwtad v in (3.2) by the basic
vectorse(,, ande, and find

Thop = e"UT (), €p)} = 2T pa) — Dop = —T" po (3.4)

where (2.3) has been employed.
Moreover, from the metric tens@r and the covariant derivativé, one may introduce
the non-metricity tensoff as

Hw, z,y) = (Vog)(z, y) = H(v,y, x) (3.5)
for all x, y, v. By virtue of (3.1), this becomes, in components,

Hyup = H(ew), €w): €p) = € (8ap) — Tpan = Fapy = Hypo (3.6)
where we put

Copy = 8 py- (3.7)

The important point, for our purposes, is that, from the component expressions (3.4)
and (3.6) of the torsion and the non-metricity, it is possible to determine the connection
coefficientsI'yg, as

Lapy = (@By) + Qupy — Kapy (3.8)
where we introduced the notation

(aBy) = [aBy] + Cupy (Levi—Civita or Riemannian connection) (3.9)
2[aBy] = eq)(8up) + €p)(8ay) — € (8py) = 2oy Bl

(Christoffel symbol of the 1st kind) (3.10)
2Cypy = Dyop + Dpay — Dopy = —2Cgay (anholonomic connection) (3.11)
20upy = Tyap + Tpay — Tupy = —208ay (contorsion tensor) (3.12)

2Kopy = Hyop + Hpay — Hypy = +2Koyp (metric-incompatibility tensor)  (3.13)
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As a consequence of (3.8)—(3.13), when the bésjs)} has been chosen (so that.s
is known), there exists a unique connectibradmitting a given metrig, torsion7, and
non-metricity H.

Alternatively to (3.8), one may raise the first index of the connection coefficients (using

the metric), and obtain

[y = Cpy) + 0%, — K%,y (3.14)
where, in the quantity® s, ), the contributiong®“[«y], which arises from (3.9), is denoted
by {“4,} and called the ‘Christoffel symbol of the second kind'. It will be necessary in the
following section.

In the special case wher®# = 0, so thatk = 0, the connection is said to be ‘metric-
compatible’. If, in the metric-compatible case, the connection admits torsion, namely if
T # 0 # Q, the connection is said to be of the ‘Riemann—Cartan’ type, whereas if the
torsion vanishes, the connection is said to be ‘Levi—Civita’ (or ‘Riemannian’), which is
the well known connection used in general relativity. Riemann—Cartan connections appear,
for instance, in the Poincargauge-field theory [7] or in supergravity [8]. The special
(torsion-free) non-metric-compatible connection characterized by

Hypy = 2Aags, (3.15)

where A is a covariant vector field, is employed in Weyl's theory [9] of gravity. (In this
context, A is usually called the ‘Weyl vector’.) See also [4, 5] for recent developments
relating non-metric-compatible connections to dilaton gravity.

We shall not develop here the geometrical interpretation of the torsion and the non-
metricity in any detail. (The reader is referred to [10] for a more comprehensive treatment.)
It is sufficient for our purposes to recall that the non-metricity expresses how the scalar
productv - w of two vectorsv andw varies whenv andw are parallel-transported along
a vector fieldz. More precisely,

z[v - w] = z[g(v, w)] = H(x, v, w) = Hypox* v w” (3.16)

where z[ f] denotes the rate of change of a functighalong . Furthermore, if the
non-metricity H,,,, is decomposed into its trace in the last two indices and the traceless
remainder as

Ha/w = [Hoz/w - %(g(“HaGA)g;w] + %(geAHaek)g/w (317)
= OHa/w + Ho8uv (3.18)
8" %Hypy =0 4H, = g Hyp;, (3.19)

it is easy to establish that two parallel-transported vectorand w experience a shear
coming from the traceless patt,,, and an expansion coming from the traklg, whereas
they undergo a Lorentz transformation in the absence of TJHLI;)U and H,,. In particular,
in a Weyl space, characterized by (3.15), the traceless®p&yt, vanishes, and the trace
part H, is given by H, = 24, in terms of the Weyl vecton.

We are now ready to investigate the covariant-derivative formulation (1.4) of Maxwell’s
equations and its relationship with the exterior-differentiation form (2.14) and (2.15).

4. Exterior-calculus formulation in covariant-derivative language

If one considers Maxwell’'s homogeneous equation (2.14) in components, the contribution
er) (Fu) is reminiscent of the tern¥y,,.,;, which appears in the form (1.4) involving
covariant derivatives. Let us therefore calculBfg. , in terms of the connection coefficients.
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By virtue of definition (3.1) of the connection coefficients, one has
F/w;p = e(p)(F/w) - varaup - F/wtravp (4'1)
= e(p)(F/,w) - Favraup + Fauravp (42)

where the antisymmetry of has been exploited. Therefore, the antisymmetric past
reads

Fluvio) = €l (Fu) — FODiaipo) + F [l lagvp) = €1o(Fn) + 2F g (4.3)
in which antisymmetrization is not applied to indices between vertical bars.

Furthermore, we saw in the previous section that, according to (3.8), the connection
componentd’,,,, are given by the combination of the Riemannian connectigav), the

contorsion tensop,,,, and the metric-incompatibility tensd¢,,,,. After substituting this
decomposition into (4.3), there follows

Fluvip) = Fluvio] + 2Fa[uQ\a\vp] - ZFQ[HKWW] (4.4)

in which we have adopted the ‘exclamation mark’ notation for the covariant derivative of
a tensor with respect to the Riemannian part of the connection

F[,uv!p] = e[p(Fuv]) + 2Fa[u<|a|\)p])~ (45)
Given that, as found in (3.13) of section 3, the metric-incompatibility telis@ symmetric
in its last two indices, the antisymmetrization involvikg in (4.4) vanishes. In addition,

the expression of the contorsion tengdrin terms of the torsiorf” is known from (3.12).
As a result, (4.4) simplifies as

Fluv:p) = Fluvpl — Fa[uTlalv,OL (4.6)
What remains to be done is to evaluate the RiemannianApasi,.

The Riemannian pafjuvp) of the connection is the sum of the Christoffel symbkolp]

of the first kind and the anholonomic connectioy,,, as seen in (3.9). The Christoffel
symbol is symmetrical in its last two indices, so that the antisymmetrization appearing in
(4.5) receives no contribution from it. Furthermore, when the anholonomic connéti®n
substituted into (4.5) by its value from (3.11) in terms of the commutation coefficients
a simple calculation yields

Fluvp) = €1(o)(Fuv)) — Fafp D% - (4.7)

When (4.7) and (4.6) are compared with Maxwell’'s homogeneous equation (2.14) in
the exterior-differential formulation, one obtains the following four equivalent expressions:

dF =0 & €(p) (Fup) — Fa[pDauu] =0 (4.8)
< Funp =0 (4.9)
< Fluvp) + Fa[uT\a\vp] =0. (4.10)

Let us consider now the inhomogeneous Maxwell equation (2.15). This equation may
be simplified by exactly the same method as the one that we applied to the homogeneous
equation, and therefore we shall not present here all the details of the calculation.

One begins by again using definition (3.1) of the connection to evaluétg in terms
of the connection coefficients”,,, yielding

G"., = ew)(G"") + T, G + 1%, G"P. (4.11)
The coefficientsI'#,, are then substituted by their values in terms of the Riemannian

connection(*,,), the contorsion tensop*,,, and the metric-incompatibility tensd¢*,,,
with the result

G".y = ew)(G") + ((Map) + Q" ap — K ap) G + ((“pa) + 0% po — K“pa) G, (4.12)

Vo
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After grouping together the terms involving the Riemannian conne¢tign, and exploiting
the symmetry of the metric-incompatibility tens&rin its last two indices, (4.12) becomes

G"™.y = G"'\y 4 0" s G + (Q%py — K* o) G (4.13)
G"y = ey (G*) + (M4p) G + (* o) GHE. (4.14)

We now replace in (4.13) the contorsiad and the metric-incompatibilityk by their
expressions (3.12) and (3.13) in terms of the torsfoand the non-metricityd, with the
consequence that

Gy =G"y, — 3T pG* + (T%p — 3H, )G (4.15)

To evaluate the Riemannian contributi6#”,, of (4.14), one recalls that the Riemannian
connection{*,,) is the sum of the Christoffel symbdg}l,,} of the second kind and the
anholonomic connectio@*,,. The latter is known in terms of the commutation coefficients
D*,, by (3.11). After substitution of these relationships into (4.14), one finds

G"'1, = €w)(G"") +{*a} G + D*0pG" — 3 D" 13 GP. (4.16)
Moreover, a simple calculation based on the properties of determinants yields [11]

. 11

{"pa} = é@e(ﬂ)(lgl) (4.17)
which enables one to reformulate (4.16) as

G", = J%em( 1G") + D% g G — 3 D"y G (4.18)

When (4.18) and (4.15) are compared with the inhomogeneous Maxwell equation (2.15),
coming from exterior differentiation, one obtains the following four equivalent formulations:

N g 1
d*G =—-1"J & ——ew(/I8IG"") + D*G" — D" 3G = —1J* (4.19)
Vgl
& GMy, = —1J* (4.20)
& G"™+ GH,", — TG + 3TV s GP = —1J". (4.21)

These expressions, together with (4.8)—(4.10), constitute the full set of Maxwell's equations
in matter, as they arise from the formalism involving exterior differentiation. We are now in
the position to study the relationship between these equations and those obtained, in (1.4),
in covariant-derivative form.

What is obvious from (4.9) and (4.20) is that the exterior-calculus formulatiorots
equivalent to the covariant-derivative form (1.4), but rather to

Fuwg =0 G"\, = —1J", (4.22)

In other words, the exterior-calculus formulation is equivalent to the covariant-derivative
form based on the Riemannian paof the total connectio. It follows (trivially) that the

two formulations agree if the connectidhis Riemannian. This is well known [3]; what

is more important is that the equivalence is maintained for a large class of conndctions
containing the Riemannian connections as special cases, as we shall now establish.

When the two versions (1.4) and (4.10) of Maxwell’'s homogeneous equation are
compared to each other, one sees that the term by which they differ vanishes, for all fields
F, if and only if the torsionT vanishes. Moreover, an analogous comparison between
the two versions (1.4) and (4.21) of the inhomogeneous equation shows that both versions
become identical if and only if the torsion vanishes, as well as the quaHy'fy. The
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latter requirement means, in the terminology of section 3, that the non-metricity must be
traceless.

The conclusion that we reach is thus that the vanishing of the tofBiamd of the
trace 41, = H,°, of the non-metricity is the necessary and sufficient condition for the
two formulations of Maxwell's equations to be equivalent. This class of connections is
larger than the class of Riemannian connections since it allows the additional freedom of
the traceless pa?tHW,g of the non-metricity. When the necessary and sufficient condition is
not satisfied, the two forms of Maxwell’s equations are genuinely inequivalent. For instance,
the two forms differ for a Weyl connection, defined by (3.15), and for a metric-compatible
connection with torsion (employed, for instance, in supergravity [8]). To illustrate the
inequivalence of the two forms, we shall investigate the example of the electrostatic field
created by a point charga vacuoin the following section.

5. Point charge and non-metricity

Let us consider the problem of determining the electrostatic field prodiucadcuq by
a point chargeQ. The manifold M in which Q resides is assumed to possess a matric
given by

g =dr? 4+ r2d9? 4 r?sirf 0 de? — dr?. (5.1)

Moreover, we also assume that the torsion vanishes and that the non-metricity takes the
simple form

ZHMVP = e(,u,)(h)gvp (52)

for a certain scalar field. In other words, with the terminology of section 3, the manifold
M under consideration is a special type of Weyl space, where the Weyl védgiven

by
4A/L = E(M)(l/l). (53)

The justification for these choices is that (5.1) is the Minkowski metric. Moreover,
when i is constant, the non-metricity vanishes, which, together with the vanishing of the
torsion, implies thatM is then Minkowski space. Thus, we are dealing here with a very
simple generalization of Minkowski space, which reduces to Minkowski space whgn
constant. Furthermore, by virtue of (5.2), the non-metricity is trace-free if and orly if
is constant. Consequently, according to the necessary and sufficient condition of section 4,
the two forms (1.2) and (1.4) of Maxwell's equations will yield equivalent results if and
only if & is constant, as we shall see.

For all the calculations that follow, we shall use the cotangent-space orthonormal frame
¢ defined by

dr
) — rdo
€= rsino do (5.4)
dr
so that the metric (5.1) becomes

(Indices referring to an orthonormal basis are indicated by a caret.)
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To describe the electrostatic field of a point cha@docated atr = 0, we take, as a
source, the four-current density* as

e 2 s0 A Sy L (5.6)
A r?
whereé$ denotes Dirac’s distribution. Furthermore, we assume that the only non-vanishing

components oG’ are
G¥* = _¢1 = p( (5.7)

where D is a function ofr only, interpreted as the radial component of the electric
displacementD. We also adopt the constitutive equation (1.5) of the vacuum, which
determinesF in terms of G. (The componentg''* = —F*! are interpreted as the radial
component of electric fieldt.)

Consider first the exterior-calculus form (2.14) and (2.15) of Maxwell’s equations. There
is no difficulty in evaluating the commutation coefficienmlgﬁ of frame (5.4) by the
application of (2.2), and to check that, for the fields (5.6) and (5.7), the only non-trivial
Maxwell equation reads

d , Y
a(r D) = E(S(r). (5.8)
After integration, this yields
10 C
D)= 4 —5H) + 5 (5.9)

where’H denotes Heaviside’s unit-step function, ands an arbitrary constant. For physical
reasons, we puf equal to zero, so as to ensure that the electric displaceMesanishes
when Q = 0. The final answer thus becomes the well known Coulomb field

D(r) = liQ =kE(r) r>20 (5.10)
4yrr?
in which the the electric field& has been obtained from by the constitutive equation (1.5)
of the vacuum. (In the Gaussian systémand!/ have the value 1 and respectively.)

The final result (5.10), which follows from the exterior-calculus form of Maxwell’'s
equations, is valid for the Weyl spackt in which the charge resides. In particular, if
the non-metricity functiom: appearing in (5.2) is constant, (5.10) applies to Minkowski
space. As mentioned in the introduction, the exterior-calculus form of Maxwell’s equations
is independent of the connection, which is manifest in (5.10) sihead D are independent
of 4. This will not be the case for the covariant-derivative form (1.4) of Maxwell's equations,
as we shall now see.

To express (1.4), one may, but need not, calculate the connection using (3.8)—(3.13),
so as to be able to evaluate the covariant derivatives present in (1.4). It is simpler to
compare (1.4) with the set (4.10) and (4.21), which we have already analysed above. In
our special case, where the torsion vanishes, the homogeneous equations are the same,
and the inhomogeneous equations only differ by the tém“aG“ﬁ. As above, we use
the frame (5.4) and the non-metricity (5.2), with a functiordepending on-. The only
non-trivial Maxwell equation, which corresponds to (5.8), reads

di 10

d 2 2
4. PD) = 02Dy = 8. (5.11)

It is equivalent to

d o _10
a(r De )_E 8(r) (5.12)
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and integrates as
1O
4yrr?

whereC is an arbitrary constant. For the same reason as in (5.9), w€ gugfual to zero,
and find

C
D(r) = H(r)e" O 4 =) (5.13)
r

l
D(r) = 0 gh=hO) _ k p(ry r> 0. (5.14)
4 r2

The final result (5.14) does now depend bnunlessh is constant, in contrast to
what was the case in (5.10). We have thus exhibited an example where the outcomes
of exterior-calculus form (1.2) and of the covariant-derivative form (1.4) of Maxwell's
equations are different. The difference arises, in this example, from a non-metricity which
is not traceless, unless the functibim (5.14) is constant. This is in keeping with the general
necessary and sufficient condition of equivalence between the exterior-calculus form and
the covariant-derivative form, established in section 4. In particular, whenconstant,
the Weyl spaceM degenerates to Minkowski space, and the results (5.10) and (5.14) both
coincide with the well known Coulomb field.

6. Conclusion

In this article, we considered the exterior-calculus form (1.2) and the covariant-derivative
form (1.4) of Maxwell's equations, and we investigated under what conditions these forms
are equivalent. A knowsufficientcondition [3] is that spacetime possesses a Riemannian
connection. We established here that thecessaryand sufficient condition is that the
torsion and the trace of the non-metricity vanish. (This contains the Riemannian connection
as a special case.) In other words, the two forms of Maxwell's equationsegeivalent

in spaces admitting either torsion or non-metricity with trace (or both).

We then illustrated this construction by studying the problem of determining the vacuum
electrostatic field produced by a point char@eresiding at the origin of a special Weyl
spaceM. This space differs from Minkowski space by the presence of non-traceless non-
metricity, which is determined by a functioh according to (5.2). Whel is constant,

M reduces to Minkowski space. IM, the exterior-calculus form (1.2) of Maxwell's
equations vyields the electrostatic field (5.10), whereas the covariant-derivative form (1.4)
yields the field (5.14). In accordance with the necessary and sufficient condition established
in section 4, these fields are genuinely inequivalent, unieissconstant.
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Appendix

It is a simple matter to relate the alternative inhomogeneous equation (1.6) to the
inhomogeneous equation of (1.4). To this end, one establishes first that the covariant
derivative of the contravariant metric is given by

g = —HP (A.1)
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which follows from definition (3.5) of the non-metricit)# and the Leibniz rule applied to
the right-hand side of

0= (glmgotv):é' (AZ)

Then, the Leibniz rule is used once more, together with (A.1), to evaluléte, as being,
after an elementary treatment,

Gy = (""" Gup)u (A.3)
= g“agU'BGals;U + HaﬂMGaﬁ - HaalgG“ﬁ. (A.4)

The relationship (A.4) enables one to re-express the results obtained for the inhomogeneous
Maxwell equation of (1.4), involvingz*".,, in terms of the quantitg’*g" G,s., which
appears in the alternative equation (1.6), and hence to re-interpret our conclusions in terms
of this alternative equation.
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